
MNRAS 000, 1–15 (2022) Preprint 22 November 2022 Compiled using MNRAS LATEX style file v3.0

Global simulations of Tayler instability in stellar interiors: a
long-time multi-stage evolution of the magnetic field.

Monteiro, G.,1,2? Guerrero, G.,1,3 Del Sordo, F.,4,5,6 Bonanno, A.,6 Smolarkiewicz P.K.7
1Physics Department, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
2Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
3New Jersey Institute of Technology, Newark, NJ 07103, USA
4Institute of Space Sciences (ICE-CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193, Barcelona, Spain
5Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
6INAF, Osservatorio Astrofisico di Catania, via Santa Sofia, 78 Catania, Italy
7National Center for Atmospheric Research, Boulder, Colorado, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Magnetic fields have been observed in massive Ap/Bp stars and presumably are also present
in the radiative zone of solar-like stars. Yet, to date there is no clear understanding of the
dynamics of the magnetic field in stably stratified layers. A purely toroidal magnetic field
configuration is known to be unstable, developing mainly non-axisymmetric modes. Rotation
and a small poloidal field component may lead to a stable configuration. Here we perform
global MHD simulations with the EULAG-MHD code to explore the evolution of a toroidal
magnetic field located in a layer whose stratification resembles the solar tachocline. Our nu-
merical experiments allow us to explore the initial unstable phase as well as the long-term
evolution of the magnetic field. During the first Alfven cycles, we observe the development of
the Tayler instability with the prominent longitudinal wavenumber, m = 1. Rotation decreases
the growth rate of the instability, and eventually suppresses it. However, after a stable phase,
sudden energy surges lead to the development of higher order modes even for fast rotation.
These modes extract energy from the initial toroidal field. Nevertheless, our results show that
sufficiently fast rotation leads to a lower saturation energy of the unstable modes, resulting in
a magnetic topology with only a small fraction of poloidal field which remains steady for sev-
eral hundreds of Alfven travel times. At this stage, the system becomes turbulent and the field
is prone to turbulent diffusion. The final toroidal-poloidal configuration of the magnetic field
may represent an important aspect of the field generation and evolution in stably-stratified
layers.
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1 INTRODUCTION

The mean-field dynamo theory (Parker 1955; Steenbeck et al. 1966)
is the most comprehensible framework to explain the origin of
large-scale magnetic fields throughout the cosmos. Comparison be-
tween observations, theoretical and numerical models allows for
some constraining in the determination of the dynamo parame-
ters. Nonetheless, explaining some cases of stellar magnetism with
the mean-field theory is challenging. Such is the situations of the
∼ 10% chemically peculiar stars of types A and B, called Ap/Bp
stars. These stars are characterized by magnetic fields with simple
tilted dipoles with amplitudes above 300 G (see e.g., Donati &
Landstreet 2009; Kochukhov et al. 2019) sustained in a radiative
zone. Concurrently, A-type stars like Vega (Lignières et al. 2009;
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Petit et al. 2010) and Sirius A (Petit et al. 2011) depict fields with
less than 1 G, leaving a gap, also called magnetic desert, between 1
and 300 G. The origin of this dichotomy is yet to be understood (see
for instance Aurière et al. 2007; Szklarski & Arlt 2013; Cantiello
& Braithwaite 2019; Jermyn & Cantiello 2020), but any explana-
tion certainly relies on the evolution of magnetic fields in stably
stratified layers (hereafter SSL). The dynamo mechanism faces also
controversy in late type stars, like the Sun, having a convective en-
velope and a radiative interior. After the discovery of the solar in-
ternal differential rotation (Schou et al. 1998), the dynamo models
have included the strong radial shear at the base of the convection
zone as a main constituent of the generation process (see Char-
bonneau 2020, for a review). Nevertheless, observations of stellar
magnetic fields suggest that a general dynamo mechanism may ex-
ist for partially convective stars, where this shear layer is present
as well as for fully convective stars (Wright & Drake 2016). Global
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2 Monteiro et al.

simulations have shown that large-scale magnetic fields can be gen-
erated in convection zones only, without the need for radial shear.
These simulations have obtained both steady (Brown et al. 2010)
and oscillatory dynamo solutions (Käpylä et al. 2012). Both kind
of solutions are also possible in dynamo simulations including the
tachocline (Ghizaru et al. 2010; Guerrero et al. 2016). Because in
the latter simulations the field evolves in a region where the turbu-
lent diffusivity is reduced, the oscillatory solutions exhibit cycles
with periods closer to the solar one.

Lawson et al. (2015); Guerrero et al. (2019b) have proposed
that magnetic instabilities may play a relevant role in the field gen-
eration by inducing an α-effect in the radiative zone and ultimately
defining the cycle period. This class of dynamo operating in SSLs
was heuristically described by Spruit (2002), revisited by Zahn
et al. (2007) and implemented in a mean-field model by (Bonanno
2013). Thus, the evolution of magnetic fields in radiative zones is
instrumental for the understanding of the origin of magnetic fields
in early and late type stars.

Thanks to the energy principle of Bernstein et al. (1958), the
spectral theory of static MHD plasma is rather well understood. Us-
ing this principle Tayler (1973) demonstrated that a toroidal field,
Bφ, can be unstable close to the axis of symmetry of a star. The sta-
bility conditions against axisymmetric and non-axisymmetric per-
turbations are d(Bφ/s)/ds < 0, and d(sB2

φ)/ds < 0, where s is
the cylindrical radius, respectively. Markey & Tayler (1973a, 1974)
studied the stability of purely poloidal fields with field lines closing
inside the star. They found that this field configuration is also likely
unstable. In the case of cylindrical geometry, Wright (1973) and
Tayler (1980) argued that mixed poloidal and toroidal field con-
figurations may be stable against adiabatic perturbations and could
therefore exist inside stellar interiors. This conclusion can be vio-
lated in the presence of resonant modes with B · k = 0, where k is
the wavevector of the perturbation, making any mixed field config-
uration unstable to high longitudinal wave numbers, as discussed
in Bonanno & Urpin (2012).

For systems with rigid rotation, Pitts & Tayler (1985) found
that rotation may help to stabilize the toroidal field. Complete sta-
bilization, however, can only be reached in the adiabatic case and
considering unrealistic fast rotation. The effects of the Coriolis
force opposing unstable perturbations may be different at equa-
tor and poles. Therefore, a latitudinal dependence is expected
Goossens & Tayler (1980) (in spherical geometry this dependence
may exists even in the non-rotating situation because distance to the
symmetry axis). A general analytical study regarding the influence
of rotation on the Tayler instability is complicated and has been
restricted to simplified models.

The first MHD numerical experiments designed to address this
problem where performed by Braithwaite (2006). They consisted of
a local compressible model in Cartesian coordinates resembling a
fraction of a star located at the north pole. The initial field was torus
circulating along the axis of rotation. The time evolution of the
magnetic field was restricted to the linear phase of the Tayler insta-
bility (TI) before reaching non-linear stages. The results confirmed
the theoretical findings. Particularly important for the present work
is the verification that rotation stabilizes the magnetic field when-
ever the rotational frequency is larger than the Alfven frequency
(AF), Ω0 > ωA. Another important result is the confirmation that
the Brunt-Väisälä frequency (ωBV ), defined by the gravity acceler-
ation and the thermal stratification, imposes a lower limit for the
radial wave number, i.e., the larger the ωBV , the smaller the wave-
length of the unstable modes. This also exposes the dependency of
the TI on the magnetic diffusivity, as magnetic fields with small

spatial scales may diffuse before the instability develops (see also
Acheson & Gibbons 1978; Spruit 1999). Braithwaite (2006) found
that even at large values of magnetic diffusivity the instability is not
fully suppressed but its growth rate decreases. Similarly, his anal-
ysis demonstrated that thermal diffusion may diminish the effects
of buoyancy allowing for larger wavelengths to be unstable for a
given value of ωBV . Understanding the interplay between all these
physical mechanisms is not straightforward.

Another way of exploring the evolution of magnetic fields in
SSLs is solving numerically the evolution of the linearized MHD
equations for different Fourier modes. The behavior of a more re-
alistic distribution of toroidal field in spherical geometry can be
solved in rotating systems in the purely adiabatic case or in the pres-
ence of dissipative terms. Kitchatinov & Rüdiger (2008) used this
WKB approach in radius, while Bonanno & Urpin (2012, 2013)
used it in latitude. These studies found that the growth of the insta-
bility is dependent on the topology of the initial magnetic field.
Also, Bonanno & Urpin (2012) found that the instability grows
faster at the equator than at the poles, yet the most unstable mode
is always m = 1. According to their results, corresponding to adia-
batic cases, solid body rotation may stabilize the magnetic field.

Publications on global MHD simulations of this instability
are scarce and have focused mainly in the evolution of an initial
poloidal magnetic field in the presence of shear (e.g., Szklarski &
Arlt 2013; Jouve et al. 2015, 2020). For the most fundamental case
of a toroidal field evolving in a SSL in spherical geometry, Guer-
rero et al. (2019a) presented anelastic non-linear MHD simulations
performed with the EULAG-MHD code. They explored the devel-
opment of the Tayler instability of a toroidal field consisting of two
bands of opposite polarity across the equator. The authors solved
the inviscid MHD equations such that the dissipation is minimal
and delegated to the proven implicit-large-eddy simulation (ILES)
property of the numerical algorithm (Smolarkiewicz & Charbon-
neau 2013; Guerrero et al. 2022). These global simulations were
able to follow the evolution of the magnetic field beyond the lin-
ear phase. The authors explored the role of ωBV in the stabilization
of the initial magnetic field. Their results indicated that increasing
ωBV , amounting to stronger buoyancy force, leads to growth rates
that decrease following a power law, yet the instability is never fully
suppressed. Importantly, the number of radial modes also increases
for large values of ωBV , as well as for large numerical resolution,
i.e., less dissipation, in agreement with the results of Braithwaite
(2006); Kitchatinov & Rüdiger (2008). Thus, in simulations with
higher resolution and large ωBV the vertical extent of the unstable
modes is so small that the instability becomes two-dimensional.

This work is a continuation of Guerrero et al. (2019a). How-
ever, in the models presented here the thermal stratification resem-
bles the upper part of the solar radiative zone. Our main goal is
exploring the stabilizing effect of solid body rotation, yet we also
get insights on fundamental properties of the TI. For instance, our
setup allows us to verify the latitudinal dependence of the instabil-
ity and the possible generation of helicity as a consequence of the
growing of unstable modes (see, e.g., Stefani et al. 2019). In ad-
dition, our simulations allow us to explore the long term evolution
and final morphology of the resulting magnetic field.

This paper is organized as follows. The description of the nu-
merical model is presented in § 2. Our results and analysis for non-
rotating and rotating cases are presented in § 3. Finally, in § 4, we
present the conclusions and discuss the implication of the results
for the understanding of magnetic fields in solar-like and Ap/Bp
stars.
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Long-time evolution of Tayler Instability 3

2 NUMERICAL SIMULATIONS

The numerical model solves the anelastic MHD equations in the
form:

∇ · (ρadu) = 0, (1)

Du
Dt

+ 2Ω × u = −∇

(
p′

ρad

)
+ g

Θ′

Θad
+

1
µ0ρad

(B · ∇) B, (2)

DΘ′

Dt
= −u · ∇Θamb −

Θ′

τ
, (3)

DB
Dt

= (B · ∇) u − B (∇ · u) , (4)

where D/Dt = ∂/∂t + u · ∇ is the total time derivative, u is the ve-
locity field in a rotating frame with Ω = Ω0(cosθ,−sinθ, 0), where
Ω0 = 2π/T is the solid body angular velocity and T is the rotational
period. p′ corresponds to the density normalized perturbations of
pressure accounting for both, the gas and magnetic pressure, Θ′

represents perturbations of potential temperature with respect to the
ambient state, Θamb. B is the magnetic field, and µ0 is the magnetic
permeability of free space. The potential temperature is related to
the specific entropy through the equation: s = cp ln Θ+const, where
cp is the specific heat. The variables ρad and Θad are, respectively,
the density and potential temperature of the hydrostatic adiabatic
reference state. g = gêr is the gravity acceleration of the solar inte-
rior adjusted from the solar model of Christensen-Dalsgaard et al.
(1996)(hereafter JCD).

The model corresponds to a spherical shell with 0 ≤ φ ≤ 2π,
0 ≤ θ ≤ π, and ranging from rb = 0.6R� to rt = 0.76R� in ra-
dius. Eqs. (1-4) are solved with the EULAG-MHD code (Smo-
larkiewicz & Charbonneau 2013) 1. The majority of the simulations
are performed with a grid resolution of 126 × 64 × 28 grid points
in longitude (φ), latitude (θ) and radius (r), respectively. Parame-
ters and results of this simulations are presented in Table 1, set A.
The equations are solved in their inviscid form, therefore, viscosity,
thermal conduction and magnetic diffusivity are accounted by the
truncation terms of the multidimensional positive-definite advec-
tion transport algorithm (MPDATA; Smolarkiewicz 2006). Thus,
the dissipation of the physical quantities changes when the resolu-
tion is increased or decreased. We evaluate how the grid resolution
affects the results by performing simulations with double resolu-
tion in all directions (252 × 128 × 56), or with double resolution
in the radial direction only (126 × 64 × 56), Table 1 sets B and C,
respectively.

The boundary conditions are defined as follow: impermeable
and stress-free at the top and bottom surfaces of the shell for
the velocity field; radial field and perfect conductor for the mag-
netic boundaries at the top and bottom boundaries, respectively;
the boundary conditions for Θ′ assume zero normal flux at the top
and bottom boundaries.

The ambient and adiabatic states are computed considering
hydrostatic equilibrium in a non-rotating system, without magnetic
field, for a polytropic gas. They are built by solving numerically the
following equations for temperature, T , and density, ρ,

∂Ti

∂r
= −

g
Rg (mi + 1)

; (5)

1 The code is available at the dedicated website:
http://www.astro.umontreal.ca/ paulchar/grps/eulag-mhd.html

Figure 1. (a) Radial profile of ambient (blue line) and adiabatic (yellow
dashed line) density stratification, and (b) square of the Brunt–Väisälä fre-
quency for the ambient state (blue). For comparison the profiles correspond-
ing to the JCD solar model are presented in red line. For simplicity, the tran-
sition from stable to convective regions was not considered in the ambient
state.

∂ρi

∂r
= −

ρi

Ti

(
g
Rg

+
∂Ti

∂r

)
. (6)

The index i stands for "ad" (adiabatic) or "amb" (ambient), and
Rg = 13732 is the gas constant of a monoatomic gas. Density, tem-
perature and pressure are related via the equation of state for the
perfect gas: pi = RgρiTi. The boundary values at rb, for solving
Eqs. (5 and 6) are Tb = 3.12 × 106 K and ρb = 506 kg m−3.

In the solar structure there is a transition between radiative
and convective layers at r ∼ 0.71R�. For simplicity, in the simula-
tions presented here we disregard this transition and consider only
stably stratified (subadiabatic) ambient states. Thus, the adiabatic
and ambient profiles assume polytropic indexes mad = 1.5 and
mamb = 2.5, respectively. Radial profiles of ρamb and ρad are pre-
sented in Fig. 1(a) with continuous blue and dashed yellow lines,
respectively. The radial profile of the square of the Brunt–Väisälä
frequency,

ω2
BV =

g
Θamb

∂Θamb

∂r
, (7)

is presented in Fig. 1(b). For comparison, the red lines in both pan-
els show profiles from the JCD model.

The initial magnetic configuration is a toroidal field anti-

MNRAS 000, 1–15 (2022)



4 Monteiro et al.

Figure 2. Configuration of the initial magnetic field (see Eq. 8). The left
panel presents the magnetic field lines at r = 0.68R�. The right panel shows
the field distribution in the (φ − θ) plane at r = 0.64R� and in the merid-
ional (r, θ) plane. Red (blue) colors correspond to toroidal field circulating
clockwise (counterclockwise) with magnitudes presented in the color bar.

symmetric across the equator, i.e., Br0 = Bθ0 = 0 and

Bϕ0(r, θ, φ) = B0 f (r) sin θ cos θêϕ, (8)

with

f (r) = exp
[
−

(r − rc)2

d2

]
, (9)

where rc = 0.675R�, d = 0.03R�. This configuration is used in all
simulations presented in this paper. B0 is the magnitude of the ini-
tial magnetic field and is a free parameter of the model. The field
lines distribution corresponding to this magnetic field is presented
in the left panel of Fig. 2 (left panel). The profile of the magnetic
field in the meridional plane is shown in the right panel of Fig. 2.
The red and blue colors in the figure represent clockwise and coun-
terclockwise orientation of the toroidal field. Notice that the radial
profile considered here is different from the one used in previous
studies (e.g., Braithwaite 2006; Kitchatinov & Rüdiger 2008; Bo-
nanno & Urpin 2012). This initial field is a reasonable representa-
tion of a toroidal field resulting after the winding-up of a poloidal
field due to differential rotation. For the velocity field and the ther-
mal perturbations the initial conditions are zero.

3 RESULTS

The models presented here are similar to the ones studied by Guer-
rero et al. (2019a), except that in this paper the radial extent of the
shell is thinner, with a thermal stratification resembling the upper
part of the solar radiative zone. The simulations are characterized
by the non-dimensional parameters

δ2 =
ω2

BV

ω2
A

, and η2 =
4Ω2

0

ω2
A

, (10)

where

ω2
BV =

〈
g

Θamb

∂Θamb

∂r

〉
r
, (11)

and

ω2
A =

〈 B2
φ0

µ0ρamb$2
c

〉
r,θ
, (12)

are averages of the Brunt-Väisälä and Alfven frequencies, in radius,
and radius and latitude, respectively. The length scale considered in
the Alfven frequency is the level arm at 45◦, $c = rc sin(π/4). The
time units presented in this work are normalized with tA = 1/ωA.
This quantity represents the number of cycles that an Alfven wave
travels along toroidal field lines with radius $c.

3.1 Non-rotating cases

Ideally, simulations should start from a state in magnetohydrostatic
equilibrium i.e., the gas pressure should balance the magnetic pres-
sure. This basic state would then be perturbed to drive the onset
of the instability. This was done, for instance, by Bonanno et al.
(2012) to study the helical symmetry breaking occurring during
the TI. However, this study uses a more complex setup than that
of Bonanno et al. (2012), and finding this equilibrium state is dif-
ficult, especially in the rotating cases where the Coriolis force is
also present. In this way, the hydrostatic equilibrium of the ambi-
ent state, Eqs.(5 and 6), is unbalanced by the initial magnetic field.
The buoyancy force aims to restore this balance with axisymmetric
radial modes that work as perturbation to the initial magnetic field.

Fig. 3 shows the evolution of the toroidal magnetic field in lat-
itude and time, at r = 0.7R� and φ = 90◦. A noticeable decay of the
initial field occurs after the unstable modes reach their maximum
energy value. The decay follows a wave-like pattern, with minor
changes for different longitudes (not shown). After the field decays
it rapidly dissipates. These pattern resembles the results obtained
by Guerrero et al. (2019a) (e.g., see their Fig. 7). The configura-
tion of the magnetic field lines at the instant when Bφ experiences
a significant decay is presented in Fig. 4(a). The figure shows the
tilt of the magnetic lines with respect to the symmetry axis, and the
consequential displacement of magnetic axis at polar regions and
the opening of the field lines at the equator. These are all manifes-
tations of the hydromagnetic instability. Fig. 4(b) shows the field
lines after at 300 Alfven travel times. At this moment, the magni-
tude of the field has markedly decreased and the magnetic topology
is substantially different from the initial one. The black dashed lines
in Fig. 3 indicate the times where these snapshots were taken. Note
that similar effects of the instability occur at the equator and the
poles. Although they are not simultaneous (see below), the growth
rate at both places is similar.

The study of the time evolution of different longitudinal modes
at different latitudes can be performed by computing the power
spectrum of the magnetic and/or the kinetic energy integrated over
latitudinal bands at one specific radius. The magnetic energy as
function of the spectral index m and time is defined as,

ẼB(m, t) = B̃R
φ(m, t)2 + B̃θ(m, t)2 + B̃r(m, t)2, (13)

where the tildes represent the quantities in the Fourier space. For
example, B̃R

φ is computed as

B̃R
φ =

1
2π

1
(θ2 − θ1)

∫ 2π

0

∫ θ2

θ1

BR
φ exp(−imφ)dθdφ. (14)

Note that BR
φ is the residual,

BR
φ(rc, θ, φ, t) = Bφ0(rc, θ, φ, t) − Bφ(rc, θ, φ, t). (15)

This subtraction is only needed for the toroidal component. Three
different latitudinal intervals were considered, [θ1, θ2], defined as
NP = [0, π/9], EQ = [π/3, 2π/3], and S P = [8π/9, π]. These are
the latitudes where changes in the field topology are initially ob-
served. Similar equations are used to compute the spectral kinetic
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Long-time evolution of Tayler Instability 5

Set Model Ω0 · 10−6 ωA · 10−8 ωBV · 10−3 δ · 104 η BP/BT σ · 10−1 [ω−1
A ] |Γ| · 10−9

A
1

A_NRB10 0 7.35 1.08 1.48 0 0.11 0.69 6.25
A_R300B10 0.24 7.35 1.08 1.48 6.70 0.09 0.41 3.31
A_R150B10 0.49 7.35 1.08 1.48 13.40 0.04 0.38 2.47
A_R130B10 0.56 7.35 1.08 1.48 15.46 0.05 0.40 2.57
A_R110B10 0.66 7.35 1.08 1.48 18.26 0.08 0.41 2.49
A_R70B10 1.04 7.35 1.08 1.48 28.71 0.08 0.27 2.23
A_R50B10 1.45 7.35 1.08 1.48 40.19 0.05 0.28 2.26
A_R30B10 2.42 7.35 1.08 1.48 66.98 0.08 0.22 1.94
A_R20B10 3.64 7.35 1.08 1.48 98.94 0.07 0.16 1.98
A_R10B10 7.27 7.35 1.08 1.48 197.80 0.06 0.04 1.55

A
2

A_NRB10τ05 0 7.35 1.08 1.48 0 3.29 3.28 7.19
A_NRB10τ5 0 7.35 1.08 1.48 0 1.44 1.46 7.26
A_NRB10τ50 0 7.35 1.08 1.48 0 0.74 0.71 6.94

A
3

A_R10B80 7.27 58.81 1.08 0.18 24.73 0.03 0.30 9.88
A_R10B40 7.27 29.4 1.08 0.37 49.45 0.06 0.47 5.95
A_R10B20 7.27 14.7 1.08 0.74 98.90 0.06 0.113 3.56
A_R10B5 7.27 3.68 1.08 2.95 395.76 0.06 0.39 0.56

B

B_NRB10 0 7.42 1.08 1.46 0 0.09 0.36 3.16
B_R300B10 0.24 7.42 1.08 1.46 6.70 0.17 0.40 1.93
B_R10B10 7.27 7.42 1.08 1.46 197.80 0.05 0.08 0.87

C

C_R300B10 0.24 7.35 1.08 1.48 6.70 0.07 0.46 2.83
C_R10B10 7.27 7.35 1.08 1.48 197.80 0.03 0.06 1.56

Table 1. Parameters and results of the simulations. The rotational rate is given by Ω0, with ωBV , δ and η are defined in Eqs. 11, 10, respectively. BP/BT shows
the ratio between poloidal and toroidal fields at the end of linear phase. σ is the growth of m = 1 magnetic longitudinal mode on early Alfven Cycles, while
|Γ| represents the calculated decrease rate of the m = 0 longitudinal mode. Sets are separated by resolution, field intensity and/or relaxation time. Meanwhile
the simulation acronym specifies set, rotation period in earth days and field intensity.

Figure 3. Time-latitude diagram presenting the evolution of Bφ for the non-
rotating case A_NRB10. The field corresponds to r = 0.7R� and φ = 90◦.
The red (blue) colors represents clockwise (counter clockwise) toroidal
magnetic field. Time units are expressed in Alfven travel times.

energy. Throughout the paper references to spectral energies cor-
responds to quantities evaluated using these transformations. For
the TI, the development of all the modes is expected, yet m = 1 is
predicted to be the fastest growing one (Goedbloed et al. 2010).

As was demonstrated analytically by Zahn (1974), the resis-
tance of the plasma in stellar interiors to dynamical instabilities
depends strongly on the thermal timescale and/or on the BV fre-
quency. In the context of the TI, such results have been confirmed
by Braithwaite (2006) for changes in BV frequency and the thermal
conductivity, and by Guerrero et al. (2019a) for changes in BV fre-
quency only. The evolution of unstable parcels of the fluid depends
on the thermal properties of the gas, represented in the prognostic

Figure 4. Similar to Fig. 2 for the simulation A_NRB10 at time marks (a)
201 and (b) 300 (1/ωA). These times are marked by black dashed lines in
Fig. 3.

equations by Θ′. In these equations, the thermal timescale is de-
fined through the relaxation time, τ (Eq. 3). Smaller values of τ
result in small amplitudes of short lived thermal perturbations, and
vise-versa. Thus, it is possible to explore the thermal effects on the

MNRAS 000, 1–15 (2022)



6 Monteiro et al.

Figure 5. Temporal evolution of the m = 1 mode at the south pole for the
non-rotating cases from set A2. Different colors correspond to values of τ of
600 days (black, set A1), 50 days (red), 5 days (blue) and 0.5 days (green).

TI by changing τ. The set of simulations A2, together with simula-
tion A_NRB10, encompass values of τ between 0.5 and 600 days.
The temporal evolution of the mode m = 1 for these simulations is
presented in Fig. 5. The figure shows that the growth rate, σ, de-
creases with the increase of τ following a power law,σ ∝ τ−0,32 (see
red line in the inset panel). The response of the plasma to changes
in τ is similar to the response when increasing the BV frequency
(Guerrero et al. 2019a). In both situations the TI is not fully sup-
pressed but grows slowly. Note also that for sufficiently large values
of τ, there is no change in σ. This happens because the amplitude
of Θ′ depends on the smaller timescale in the model. Thus, for a
long relaxation timescale it will be independent of τ and rely on the
Alfvenic timescale (∼ 150 days for the value of B0 used in this set
of simulations).

In Fig. 6(a) we present the time evolution of the modes m = 0
(continuous lines), m = 1 (dashed lines) and m = 2 (dotted lines) of
the magnetic (left) and kinetic (right) spectral energy density for the
non-rotating simulation A_NRB10. The colors stand for polar re-
gions NP (red), S P (blue), and EQ (thin green lines). At the begin-
ning of evolution, after a transient phase where the fluid balances
the magnetic forces, the energy of the longitudinal modes rises. The
modes m = 1 and m = 2 grow faster than m = 0. Similar behavior
is observed in the kinetic energy spectra. The instability develops
earlier at polar regions, nevertheless, there is no significant differ-
ence in the growth rate between pole and equator for modes m = 1
and 2. The mode m = 0 develops faster at the poles. The growth of
the mode m = 0 alongside m = 1 is an expected result for a steeper
radial profile of the magnetic field (Braithwaite 2006).

The magnetic field topology is substantially affected by the de-
velopment of unstable modes only when the energy of these modes
is comparable to the initial magnetic energy. The deformation of
the field lines at this stage is displayed in Fig 4 (a). After further
evolution, the field lines loss any resemblance with the initial con-
figuration, see Fig 4 (b).

From the previous qualitative and quantitative analysis, three
different stages of evolution are identified: (a) the linear phase,
where the unstable modes grow exponentially; (b) the saturation
phase, where the energy of these modes reaches similar values
than the initial magnetic energy; (c) the decaying phase where the
magnetic field diffuses. As it will be shown later, this phase is

compatible to turbulent decay following the Kolmogorov scaling,
ÊB ∝ m−5/3.

In the following sections we will study the behavior of the
magnetic and velocity fields in these three phases for simulations
with various rotation rates. We will also explore the effects of differ-
ent resolution on the magnetic field evolution during these phases.

3.2 The stabilizing effect of rotation

Several authors have shown that rotation helps stabilizing toroidal
fields in radiative zones whenever Ω0 is comparable to ωA (η ∼ 1)
(e.g., Braithwaite 2006; Bonanno & Urpin 2013). Nevertheless, if
the system has any finite diffusion, full stabilization will only be
achieved if ωA � Ω0 (η � 1) (Kitchatinov & Rüdiger 2008). Oth-
erwise, rotation will only decrease the growth rate of the instability.
All these works have focused on the linear phase but have not ex-
plored the saturation nor the decaying phase of the field.

The simulations presented in this section include the Coriolis
term in Eq. 2 to explore if the TI can be stabilized by rotation. In the
set of simulations A1, ωA is kept constant and the rotation rate, Ω0

varies between 0.24 × 10−6 Hz and 7.27 × 10−6 Hz, corresponding
to rotation periods between 300 and 10 days, and 6.7 ≤ η ≤ 197.8.
Alternatively, in the set of simulations A3 the rotation is kept con-
stant, Ω0 = 7.27 × 10−6 Hz (10 days), and ωA varies in the range
3.68 × 10−8 Hz ≤ ωA ≤ 58.81 × 10−8 Hz. This corresponds to
values of B0 between 0.65 and 10.4 T, and 24.7 ≤ η ≤ 395.7. The
simulations evolve for several hundreds of Alfven travel times to
consider the three phases of evolution described above.

3.2.1 Linear phase

Exploring the effects of changing Ω0 and ωA in the linear phase of
the TI allows for comparison between global non-linear simulations
and the earlier theoretical predictions (see e.g. Pitts & Tayler 1985)
and numerical results (see e.g. Braithwaite 2006). Figure 6 (panels
b to d) shows the time evolution the magnetic (left) and kinetic
(right) energy densities in simulations A_R300B10, A_R150B10
and A_R10B10, respectively. The effects of including rotation in
the simulation A_R300B10 (η ∼ 7) can be observed in Fig. 6(b).
The linear evolution of mode m = 1 in the log-normal plot is an
important indication that this value of η is not sufficient to suppress
the TI. It is interesting to notice that no significant difference are
observed between lower (see green dashed lines) and high latitudes
(red and blue dashed lines). Nevertheless, other modes, such as m =

0 and m = 2, do remain stable until t ∼ 75tA. After this point, the
energy of these modes continues rising with the same growth rate
as that of m = 1. The kinetic energy modes m = 1 and m = 2
evolve in a similar way. The mode m = 0 has a larger energy which
is roughly constant along the linear phase.

Fig. 6(c) corresponds to simulation A_R150B10, with the ro-
tation rate increased by a factor of two (i.e, η ∼ 14). The magnetic
mode m = 1 grows linearly until t ∼ 40tA, yet the same mode of the
kinetic energy seem to be stable. Interestingly, the magnetic and ki-
netic modes m = 1 and 2 (and other high order modes not presented
in the figure) at both, poles and equator reach the energy of satura-
tion following two subsequent energy jumps. The same is observed
in the evolution of ẼB and ẼK for simulations with η > 14, i.e., a
slow initial linear growth, with a growth rate that depends on the
rotation rate (see Table 1), followed by energy jumps. The panel
(d) of Fig. 6, shows the evolution of simulation A_R10B10, with
η = 197, where the initial growing is almost entirely suppressed.
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Long-time evolution of Tayler Instability 7

Figure 6. Evolution of the modes m = 0 (Eq. 14, continuous), m = 1 (dashed), and m = 2 (dotted) of the magnetic (left panels) and kinetic (right panels)
energies. Panels (a) to (d) correspond to simulations A_NRB10 (no rotation), A_R300B10 (Prot = 300 days), A_R150B10 (Prot = 150 days), and A_R10B10
(Prot = 10 days), respectively. Different colors correspond to the latitudes where the energy of the unstable modes is computed, the red and blue lines
correspond to the north and south poles, and the thin green lines correspond to the equator. The black dot-dashed lines indicate the saturation phase (see the
text).
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Figure 7. Early temporal evolution of magnetic mode m = 1 for the same
simulations displayed in Fig. 6. For a better comparison of the growth rates
the energy is normalized by its value at t = 0, and the initial transient phase
has been removed.

Figure 8. Same as Fig. 6 for simulations with different magnitude of initial
magnetic field (a) A_R10B5 (B0 = 0.65 T), (b) A_R10B20 (B0 = 2.6 T),
(c) A_R10B40 (B0 = 5.2 T), and (d) A_R10B80 (B0 = 10.4 T).

Fig. 7 displays a comparison between the initial temporal evo-
lution of the mode magnetic m = 1 for the simulations of the set
A1 Table 1). The thicker lines correspond to the simulations pre-
sented in Fig. 6. The thin lines correspond to the remaining simu-
lations as seen in the legend. The first ∼ 15tA of the non-rotating
simulation (A_NRB10) have been disregarded because they corre-
spond to initial transient period described above. Note the decreas-
ing growth rate of the simulations as a function of η, in this case
varied through the rotation rate. The jumps of energy occur after
∼ 40tA for η & 13. For intermediate values of η the TI coexist with
the process generating these energy jumps. In the fast rotating sim-
ulations, η & 100, the TI seems to be suppressed but the surges still
occur. These results partially agree with the local simulations per-
formed by Braithwaite (2006) which focus only in the early stages
of the linear phase. Yet, these energy jumps are not observed in the
time evolution of their models.

Fig. 8 shows the temporal evolution of simulations where Ω0

is kept constant and η is changed by considering different values of

B0 (set A3). The results confirm the same pattern discussed above,
i.e., for large η (panel a) the TI is suppressed and the energy grows
through consecutive jumps. For η . 100, the TI coexists with these
energy surges. Note that these cases cannot be directly compared
with the simulations of set A1, because varying B0 also changes
the value of δ. And both quantities influence the growth rate.

In EULAG-MHD the dissipation coefficients depend on the
resolution of the model. Generally, it is expected that viscosity,
thermal conductivity, and magnetic diffusivity decrease as resolu-
tion increases. As previous studies have demonstrated, changes in
these coefficients also affects the TI.

Finally, Fig. 9 shows the time evolution of simulations in set
B, where the grid resolution is increased by a factor of two in all
directions. Panels (a) to (c) corresponds to different value of η ob-
tained with different rotation rates. Line styles and colors are the
same as in Fig. 6. The resolution increase implies the reduction of
thermal and magnetic diffusion coefficients, which have concurrent
effects. A lower thermal diffusion makes the system more stable to
TI, while lower magnetic diffusion makes it more unstable. Panel
(a) shows that this did not significantly changed the non-rotating
case displayed in Fig. 6(a). The major differences being the lower
growth rate and consequent delayed saturation phase. This decrease
in σ suggest a dominance of the thermal effects in this case. This
result agrees with previous analytical (see e.g. Spruit 1999) and
numerical (Braithwaite 2006) results. Meanwhile, for rotating sim-
ulations the change in σ is insignificant. For Panel (b) even the mo-
ment of saturation phase is similar to its counterpart in Fig. 6(b).
Meanwhile, the fast rotating case demonstrates a tenfold increase
in the stabilization during linear phase.

From all the sets of simulations presented in this section, it is
possible to conclude that rotation stabilizes the development of the
Tayler instability. Larger values of η and δ are able to fully suppress
the development of the m = 1 mode for a few tens of Alfven travel
times. Afterwards, a new instability occurs showing sudden surges
of energy. Note that for very slow rotation, e.g., case A_R300B10,
these jumps are not observed. While to this point we are not able to
explain the physics of this second instability, the sets of simulations
A1, A3 and B, show that its development depends on the magnetic
field strength and the dissipation coefficients. The stronger the field,
and the smaller the dissipation coefficients, the longer it takes for
the jumps to occur. Independently of the nature of these energy
surges, in all the cases the final energy of the unstable modes never
surpasses the initial magnetic energy. Since the model solves for
the full system of non-linear equations, it is possible to explore
the long term behavior of the magnetic field in the simulations.
The next sections presents the results concerning to the subsequent
saturation and decaying stages.

3.2.2 Saturation phase

Once the unstable modes reach saturation energy, a change in the
topology of the initial magnetic field is observed. The saturation,
decay, as well as the final configuration of the magnetic field de-
pend on the rotation rate. Figs. 10 and 11 show the magnetic field
lines from the simulation with the slowest (A_R300B10, η = 6.7)
and fastest rotation (A_R10B10, η = 197), respectively. On each
figure the panels (a) depict the saturation stage where the topology
still contains a prominent toroidal field, yet the displacement of the
field lines show the imprint of the unstable modes. In the panels
(b), the snapshots are taken during the decaying phase. The mag-
netic field strength is about one order of magnitude smaller than its
initial strength, and the field lines are deformed mostly at equato-
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Long-time evolution of Tayler Instability 9

Figure 9. Evolution of the energy of initial modes of the doubled resolution simulations. Line style and color properties are the same as the ones used on
Fig. 6.

rial latitudes. However, a toroidal structure is still observed. This
is in contrast with the results obtained for the non-rotating case
(A_NRB10, η = 0), presented in Fig. 4, and demonstrates the sta-
bilizing effects of rotation. Also, note that the magnetic field con-
tains a relevant poloidal component (vertical field lines) which may
contribute to preserve a stable configuration.

The same behavior in the saturation stage is observed in the
high resolution simulations (set B). A comparison between cases
B_NRB10 (η = 0), B_R300B10 (η = 6.7) and B_R10B10 (η =

197) is presented in Fig. 12(a)-(c), respectively. The color coding
in this figure is the same as in Fig. 2. The upper (lower) row shows
projections of the north pole (equator). In panels (a) and (b), the
mode m = 1 appears at the poles as a misaligned structure that
wobbles around the rotation axis. At the equator, it appears as the
opening of the field lines forming a clamshell-like structure. Note
also the large inclination of the magnetic axis resulting in the non-

rotating case. On the other hand, the field lines obtained in the the
fast rotating simulation (panel c), do not display relevant tilt of the
magnetic axis, and the field lines at the equator are barely open,
depicting only high order modes.

The qualitative description of the results in Figs. 11 and 12 can
be quantified through the spectrum of the magnetic energy den-
sity. In Fig. 13 the energy spectrum, ÊB, is calculated by decom-
posing the total vector magnetic field on its spherical harmonics
representation using the SHTns library (Schaeffer 2013), at the ra-
dius r = rc. Note that in this case the spectrum averages all the
available latitudinal modes. The upper and lower panels correspond
to characteristic simulations from set A1, A_NRB10 (blue line),
A_R300B10 (red), A_R10B10 (green); and from set B, B_NRB10
(blue), B_R300B10 (red), and B_R10B10 (green), respectively.
The dashed (continuous) lines corresponds to the linear (decaying)
phase at an evolution time where the energy in the mode m = 1
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Figure 10. Similar to Fig.2 for simulation A_R300B10 at (a) end of linear
phase (251 1/ωA) and (b) during the decaying phase (600 1/ωA).

Figure 11. Similar to Fig. 2 for simulation A_R10B10 at (a) end of linear
phase (110 1/ωA) and (b) during the decaying phase (601 1/ωA).

is similar in all the presented simulations. Animations showing the
temporal evolution of the spectra are presented in the supplemen-
tary material.

During the linear phase (dashed lines in Fig. 13), the non-
rotating (blue) or slow rotating (red) simulations behave similarly.
The magnetic energy is mostly in the modes m = 0 (the initial mag-
netic field) and 1 (the fastest growing mode). Conversely, in the
simulations with fast rotation (green) modes up to m ∼ 35 develop
similar energy than the mode m = 1. These results are independent
of the grid resolution. The energy growth of the high order modes
occurs during the energy surges discussed above. At the decaying
phase, the profile of the energy density spectra is similar for all
the simulations. They have a scaling law compatible with decay-
ing turbulence, where ÊB ∝ m−5/3 (Kolmogorov 1941). Note that
the energy of the m = 0 mode decays substantially only for the
non-rotating simulations (see continuous blue lines). This implies
that even slow rotation is sufficient to conserve the initial magnetic
field.

The effects of rotation during the non-linear phase of evo-
lution can be explored through the temporal evolution of the en-
ergy contained in the toroidal component of the magnetic field,
EBφ = B2

φ/B2
0. Here, the average in B2 is taken in the directions

φ, θ, and r between 0.65R� and 0.70R�, corresponding to the full
width at half maximum (FWHM) of the initial Gaussian profile of
Eq. (8). Fig. 14(a) depicts the temporal evolution of EBφ , the contin-
uous (dashed) lines correspond to simulations from the set A1 (B).
Lines with different colors correspond to various rotation rates. The
figure encompasses the linear, saturation, and the decaying phases
until t ∼ 800tA. Note that the decay of EBφ during the linear phase
is not evident in this representation because it is of the order of 10−6

(energy of the residual toroidal field). The graph demonstrates that
rotation prevents the decay of the toroidal magnetic field. For no ro-
tation the decay is sharp (see black lines). Progressively increasing
the rotation rate results in slower and slower decay. The decay rate
of the toroidal magnetic energy, Γ, can be estimated in time seg-
ments where the time derivative of EBφ is constant (see the values
of Γ in Table 1). The black dotted lines are eye guides exemplifying
these segments.

In addition, Γ also depends on the numerical resolution, i.e.,
on the effective numerical magnetic diffusion. This is evident by
comparing the continuous with the dashed lines corresponding to
the sets of simulations A1 and B, respectively. As a matter of fact,
increasing the resolution only in the radial coordinate (set C, not
presented in the figure), does not show the significant change in the
decay rate observed when the resolution is increased twofold in the
three coordinates (set B). This results confirms that the evolution of
the field happens mainly in the horizontal directions whenever δ is
sufficiently high.

In panel (b) of Fig. 14 we present |Γ| as a function of η for
simulations from the sets A1 (blue circles), B (black triangles), C
(green diamonds). The value of |Γ| changes by a factor of 2.15 from
the lowest to the highest rotating rates, also lowest to highest values
of η (simulations A_R300B10 to A_R10B10, blue circles), with a
scaling that may be fitted with the power law |Γ| ∝ η−0.19. Extrapo-
lating these law for |Γ| → 0 (fully stable situation) implies unreal-
istic fast rotation. Nevertheless, the black triangles, corresponding
to the set B, show that this result is sensitive to the resolution. For
instance, the decay rate changes by a factor of 1.8 between simula-
tions A_R10B10 and B_R10B10 (η = 197.8), and of 1.7 between
simulations A_R300B10 and B_R300B10 (η = 6.7).

The red squares show the changes in |Γ| for simulations with
a fixed rotation rate, Ω0 = 7.27 · 10−6 Hz, and variations in η
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(a) Non-rotating (b) Slow rotation (300 days) (c) Fast rotation (10 days)

Figure 12. Magnetic field lines of the (a) non-rotating (B_NRB10), (b) slow rotating (B_R300B10), and (c) fast rotating (B_R10B10) simulations of set B.
The snapshots are taken at the time of energy saturation of the unstable modes, and at r = 0.68R�. The top panels show a projection of the geometrical north
pole, the bottom panels show a equatorial projection. The color scheme is the same as in Fig. 2. Animations showing the temporal evolution of the magnetic
field lines for these simulations are available as supplementary material.

due to different amplitudes of B0 (see simulations A_R10B5 to
A_R10B80 in Table 1). These cases show a curve with low values
of |Γ| for the smaller values of η (large magnetic fields), a maximum
at η = 98.9, and a decay for the larger values of η (weaker mag-
netic fields). This trend happens because changing the values of η
in this form, also changes the normalization time scale. In physi-
cal units, for B0 greater (smaller) than 1.3 T, the values of |Γ| are
higher (lower) than those corresponding to the set A1. Thus, it is
possible to conclude that the decay of the initial magnetic field is
less affected by the TI whenever the relevant time scale is set by the
rotation.

3.3 Long term evolution

After the sharp decay observed during the saturation phase, EBφ
continues decreasing. Interestingly, during this phase the slope of
the curves changes and ultimately tends to have a similar slope, in-
dependent of the rotation rate or even of the numerical resolution
(see t > 700tA in Fig. 14(a)). This may be interpreted as a turbulent
diffusive decay also confirmed by the m−5/3 scaling observed in the
magnetic power spectra (the same scaling is obtained for the kinetic
power spectra, not presented in the paper). Therefore, by multiply-
ing the |Γ| estimated for this stage (see red dotted line if Fig. 14(a))
by $2

c/2, it is possible to evaluate the turbulent magnetic diffusiv-
ity, βt. For the set A1 of simulations βt ∼ 8 · 107 m2/s; for set B,
βt ∼ 5 · 107 m2/s. This may have consequences regarding the life
time of magnetic fields in SSLs.

The decay of toroidal field observed in Fig. 14(a) is followed
by an increase of the poloidal component of the magnetic field
which ultimately leads to a stable configuration. Figure 15 displays

the ratio between the poloidal and the toroidal field components,

BP/Bφ, in terms of the Alfven travel time. Here, BP =

√
B2
θ + B2

r

and Bφ are the volume averaged poloidal and toroidal magnetic
field components, respectively. The average is performed as de-
scribed above. Continuous and dashed lines correspond to simu-
lations of sets A1 and B, respectively. The black lines represent the
non-rotating cases, while different colors correspond to different
rotation rates.

A significant increase in the poloidal field is observed when
the simulations reach the saturation phase (Fig. 15). The non-
rotating cases, as well as the cases with slow rotation, η = 6.7, dis-
play a rapid increase of the poloidal component, followed by a de-
crease when the simulation advances towards the decaying phase.
For simulations with η & 30, the ratio BP/Bφ converges to a plateau
at ∼ 0.3. The same ratio is also observed for the set of simula-
tions A3 where both parameters δ and η change. In conclusion,
both, the rotation and the poloidal field contribute to sustain the
remnant toroidal field stable for several hundreds of Alfven travel
times. Nevertheless, this field is embedded in a turbulent region
and decays accordingly. For the simulation with higher resolution
B_R10B10, the final value of BP/Bϕ is smaller than for their low
resolution counterpart, A_R10B10 (see dashed light-blue line in
Fig. 15). Therefore, although the initial field is unstable, the growth
of the unstable modes is prevented by rotation. Furthermore, only
a small fraction of poloidal field leads to a configuration that re-
mains stable, yet, this field is prone to turbulent diffusion. With
the increase of resolution, the saturation and decay stages occur at
a much longer time (compare solid and dashed light blue lines in
Fig. 14(a)). This makes higher resolution simulations highly time
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Figure 13. Distribution of the spectral magnetic energy density, ÊB, in the
longitudinal modes, m, for simulations (a) of set A, A_NRB10 (blue line),
A_R10B10 (green), and A_R300B10 (red); and (b) of set B, B_NRB10
(blue line), B_R10B10 (green), and B_R300B10 (red). The dashed lines
correspond to the linear phase in a stage with similar energy between simu-
lations. The continuous lines correspond to the decaying phase. In this phase
we observe the slope typical of fully developed homogeneous and isotropic
turbulence.

consuming and prohibitive for the available supercomputer time.
Thus, it remains uncertain how the ratio BP/Bϕ will change for
effective diffusion approaching the values of the Ohmic magnetic
diffusivity inside radiative zones. For the radiative zone below the
solar tachocline, βOhm ∼ 103 m2/s (Zahn et al. 2007).

3.4 Helicities

The generation of the poloidal magnetic field observed in Fig. 15
must originate from the processes discussed in the previous sec-
tions. This field component develops as the magnetic field attempts
to achieve a stable configuration (Tayler 1973). As seen, the rotat-
ing cases reach a steady state with a magnetic field mostly toroidal
with a small fraction of the poloidal component. On the other hand,
the poloidal field amplification is associated with the development
of helical motions or currents in dynamo theory (Steenbeck et al.
1966). Note, however, that the fastest growing mode of the mag-
netic field associated to the Tayler instability is m = 1, whereas
in the mean-field dynamo theory the large scale is normally con-

Figure 14. (a) Evolution of EBφ , as a function of time. The continuous
(dashed) lines correspond to simulations from the set A1 (B). Lines with
different colors correspond to various rotation rates as indicated in the leg-
end. The black dotted lines show the time segments where the decay rate, Γ,
is calculated (for the sake of clarity of the figure, only the segments corre-
sponding to three characteristic simulations are shown). The turbulent mag-
netic diffusivity, ηt, is estimated in the late phase of evolution (t ≥ 500
[1/ωA]) where the energy decays roughly at the same rate for all simula-
tions (see red dotted line as an example). (b) Distribution of Γ as a function
of η (Eq. 10) for simulations from the sets A1 (blue circles), B (black trian-
gles), C (green diamonds). The simulations from set A2, with fixed rotation
and varying magnetic fields, are presented with red squares (see Table 1).
The inset presents the same results but with Γ expressed in terms of the
Alfven travel time.

sidered axisymmetric. Therefore, mean-field dynamo coefficients
require some axisymmetric contribution. By computing the small-
scale kinetic and current helicities from the simulated data we can
infer if such contribution exists.

In Fig. 16 we depict the time evolution of both the small scale
kinetic and current helicities,

Hu = (∇ × u′) · u′ (16)

Hc = (∇ × B′) · B′/(µ0ρad),

where the prime denotes perturbations of the velocity and
magnetic fields with respect to the longitudinal mean, i.e., all
modes but m = 0. The overline here has the same meaning pre-
viously defined, except that now the latitudinal average is done
in the Northern hemisphere only. In Fig. 16, the green and blue
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Figure 15. Temporal evolution of the ratio BP/Bφ for simulations in the
sets A (continuous lines) and B (dashed lines). Note that rapidly rotating
simulations seem to converge to a constant value of this ratio.

Figure 16. Temporal evolution of Hc (blue) and Hu (green) for simulations
in sets A (column a) and B (column b), with each row corresponding to the
same rotational period. The intensities of the helicities were multiplied by
a factor of 5 on column a for better visualization.

lines corresponds to the Hu and Hc, respectively. The left and right
columns show three characteristic simulations from set A1, namely
A_NRB10, A_R300B10 and A_R10B10, and three from the set B,
B_NRB10, B_R300B10 and B_R10B10.

Signatures of the helicities are observed for all cases, starting
to appear just before the saturation phase (see red vertical line).
This time correlates well with the increase of BP/Bφ observed in
Fig. 15. Nevertheless, there is no preferred sign for the helicities,
but sign reversals occur in all cases. The amplitudes of Hu and Hc

have the same order of magnitude, yet the signal of Hu decays
faster. It is clear, however, that the helicities from simulations of
set B have higher amplitudes. Notably, the non-rotating cases (first
row) display a stronger current helicity than the rotating counter-
parts. Meanwhile, in the rotating simulations the helicities last for

several Alfven travel times, depicting several sign reversals and a
damped evolution.

Previous studies have demonstrated that large scale shear in
combination with a sign changing may lead to incoherent α-effect
and may be sufficient for sustaining the dynamo (e.g. Vishniac &
Brandenburg 1997; Mitra & Brandenburg 2012). Thus, the results
presented here might support the idea of a large-scale dynamo in a
radiative layer. Simulations including shear are ongoing work.

4 SUMMARY AND CONCLUSIONS

Magnetic fields are presumably present in the radiative zone of
solar-like stars and have also been observed at the surface of mas-
sive Ap/Bp objects. However, certain magnetic fields topologies in
these layers are prone to different kinds of instabilities (e.g., Tayler
1973; Markey & Tayler 1973b).

This study focuses on the Tayler instability (TI), where the
decay of an initial axisymmetric toroidal field leads to the growing
of other longitudinal modes, modifying the original configuration.
Tayler (1973); Pitts & Tayler (1985) proposed that this instabil-
ity could be quenched by the the influence of rotation and/or by
the presence of a poloidal field whose forces opposes the displace-
ment caused by the unstable modes. In this work, we use non-linear
MHD simulations, in spherical geometry, to explore the stabilizing
role of rotation on a toroidal magnetic field, anti-symmetric about
the equator, permeating a layer whose thermodynamic stratification
resembles the upper fraction of the solar radiative zone. The simu-
lations were performed with the EULAG-MHD code, which solves
the anelastic MHD equations. To understand the role of rotation in
the Tayler instability we consider non-rotating and rotating cases,
with rotational periods between 300 and 10 days. Alternatively, we
present cases with fixed rotation and various initial magnetic field
strengths. Our analysis was performed in terms of the non dimen-
sional quantities, η (Eq. 10), which measures the relative impor-
tance of the Coriolis and magnetic forces, and δ, measuring the
relative importance of the buoyant and magnetic forces.

Since the magnetic diffusivity, as well as other dissipative pro-
cesses, are expected to be insignificant in the solar radiative zone,
we use the code without explicit dissipation terms. Nevertheless,
there is always a numerical effective dissipation of all quantities
which in the EULAG-MHD code is nonlinear and intermittent in
space and time, and depends on the grid size. Thus, increasing the
numerical resolution of the model results in less dissipation. This
affects the dynamics of the magnetic field in different forms. We re-
mark that simultaneously diminishing thermal diffusion and mag-
netic diffusivity may have opposite effects regarding the TI (Zahn
1974; Braithwaite 2006).

During the evolution of the magnetic field we identify three
stages. First, the linear phase, where the unstable modes grow ex-
ponentially. Most of the previous work regarding TI has focused
on this phase. Second, when the growing modes reach their maxi-
mum energy, the initial magnetic field exhibits a sharp decay. This
is identified as the saturation phase. And third, a diffusive decay
phase. At this stage the energy spectrum follows a scaling law with
E ∼ m−5/3. Thus, we identify this as turbulent decay.

For all sets of simulations presented in Table 1, we find that
the cases without rotation or rotating slowly (η < 6.7) present a
clear exponential growth of the longitudinal mode m = 1 during
the linear phase. This is the canonical signature of the Taylor insta-
bility. Although the unstable modes develop first at polar regions,
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there is no significant difference in the growth rate between polar
and equatorial latitudes.

For η > 13.4, the influence of rotation appears and the mode
m = 1 is kept stable for several Alfven travel times. However, after
this stable phase, sudden energy surges occur for the modes m ≥ 1,
which subsequently reach energy levels close to the energy of Bφ0.
This is an unexpected result and, to our knowledge, not reported in
the literature. We have been unable to identify the nature of these
energy surges and they will be subject of follow up studies. Never-
theless, the results from simulations in sets A3 and B indicate that
the time interval where the modes m ≥ 1 remain stable depends
on the amplitude of the initial magnetic field and on the resolution
of the simulations, tantamount of the dissipative processes. These
dependencies make us believe that this is a physical phenomenon
rather than a numerical artifact.

Either because of the TI or the energy surges, the unstable
modes reach energy levels compatible to that of the initial field,
Bφ0, i.e., in both cases the energy of the growing modes is extracted
from the initial magnetic field which decays at this saturation stage.
Consequently, a substantial change in the magnetic field topology
is observed during the saturation phase. The decay rate of these
changes, |Γ|, depends on the value of η. The results demonstrate
that the initial magnetic field topology is less affected by the TI
whenever the relevant time scale is set by the rotation.

As the toroidal field decays, the formation of a poloidal com-
ponents is observed in all simulations. The analysis shows that for
simulations with η & 30, the ratio BP/Bφ converges to a plateau at
∼ 0.3. The same ratio is also observed for the set of simulations
A3 where both parameters, δ and η, change. For the high reso-
lution simulation B_R10B10, this ratio is smaller, BP/Bφ ∼ 0.1.
The implication of this finding is that, despite the initial instabil-
ity, the growing of unstable modes is effectively prevented by the
Coriolis force. These modes transfer only a small fraction from the
initial magnetic energy into a poloidal field. The resultant config-
uration remains topologically stable by hundreds of Alfven travel
times (see Fig. 12).

After reaching such a ratio, the simulations evolve with this
equilibrium configuration prone only to turbulent diffusion. For
these cases, despite the decay in amplitude, the field experiences
minor topological changes. On the other hand, in cases without
rotation or with lower η, the initial topology is mostly lost. The
poloidal component grows rapidly and eventually leads the simula-
tion to stop, requiring prohibitive smaller time steps.

During the generation of poloidal field, prior to the saturation
phase, the simulations develop helical motions and currents. They
do not show a preferred hemispheric sign, but several reversals with
damping evolution. Interestingly, the amplitude of the helicities is
larger for the non-rotating simulations. However, in these cases the
helicities also decay faster. Such incoherent α-effect may be suf-
ficient for sustaining a dynamo. Thus, the results presented here
might support the idea of a large-scale Tayler-Spruit dynamo in a
radiative layer. To sustain this dynamo, however, a certain amount
of shear is required to replenish the toroidal field. The evolution of
the field under these conditions is left for a future study.
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